#### **Methane Losses from Compressors**

### Lessons Learned from Natural Gas STAR



Producers Technology Transfer Workshop
Marathon Oil and
EPA's Natural Gas STAR Program
Houston, TX
October 26, 2005

### Compressors: Agenda

- ★ Methane Emissions
- \* Reciprocating Compressors
- ★ Centrifugal Compressors
- ★ Directed Inspection and Maintenance (DI&M)
- ★ Discussion Questions



# Natural Gas Losses by Equipment Type



## Compressor Emissions What is the problem?

- Fugitive emissions from compressors in all sectors are responsible for approximately 86 Bcf/yr
- ★ Over 45,000 compressors in the natural gas industry





## Methane Losses from Reciprocating Compressors

- Reciprocating compressor rod packing leaks some gas by design
  - Newly installed packing may leak 60 cubic feet per hour (cf/h)
  - ♦ Worn packing has been reported to leak up to 900 cf/h



NaturalGas (1)

## Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage still occurs through nose gasket, between packing cups, around the rings and between rings and shaft



### **Methane Losses from Rod Packing**

| Emission from Running Compressor          | 870  | Mcf/year-packing |
|-------------------------------------------|------|------------------|
| Emission from Idle/Pressurized Compressor | 1270 | Mcf/year-packing |
|                                           |      |                  |
| Leakage from Packing Cup                  | 690  | Mcf/year-packing |
| Leakage from Distance Piece               | 300  | Mcf/year-packing |

| Leakage from Rod Packing on Running Compressors       |     |     |      |     |  |
|-------------------------------------------------------|-----|-----|------|-----|--|
| Packing Type Bronze Bronze/Steel Bronze/Teflon Teflon |     |     |      |     |  |
| Leak Rate (Mcf/yr)                                    | 612 | 554 | 1317 | 210 |  |

| Leakage from Rod Packing on Idle/Pressurized Compressors |     |     |      |     |  |
|----------------------------------------------------------|-----|-----|------|-----|--|
| Packing Type Bronze Bronze/Steel Bronze/Teflon Teflon    |     |     |      |     |  |
| Leak Rate (Mcf/yr)                                       | 614 | N/A | 1289 | 191 |  |



Source: Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations – PRCI/ GRI/ EPA

## Methane Recovery Through Economic Rod Packing Replacement

#### \* Assess costs of replacements

- A set of rings: \$ 500 to \$ 800 (with cups and case) \$1500 to \$2500
   ★ Rods: \$1800 to \$10000
  - Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs
- ◆ Determine economic replacement threshold
- Partners can determine economic threshold for all replacements

| Economic Replacement Threshold (scfh) = CR * DF * 1,000                                                                           |                                          |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|
| Where:                                                                                                                            | (H * GP)                                 |  |  |  |
| CR = Cost of replacement (\$) DF = Discount factor (%) @ interest i H = Hours of compressor operation per GP = Gas price (\$/Mcf) | $DF = \frac{i(1+i)^n}{(1+i)^n - 1}$ year |  |  |  |



### Is Rod Packing Replacement Profitable?

#### ★ Periodically measure leakage increase

Rings Only

Rings: \$1,200

Rod: \$0

Gas: \$3/Mcf

Operating: 8,000 hrs/yr

| Leak Reduction Expected (scfh) | Payback Period<br>(yrs) |
|--------------------------------|-------------------------|
| 55                             | 1                       |
| 29                             | 2                       |
| 20                             | 3                       |
| 16                             | 4                       |
| 19                             | -                       |

|     | Rod | and | l Ri | ng | S |
|-----|-----|-----|------|----|---|
| N 4 |     |     | •    |    | _ |

Rings: \$1,200

Rod: \$7,000

Gas: \$3/Mcf

Operating: 8,000 hrs/yr

| Leak Reduction Expected (scfh) | Payback Period<br>(yrs) |
|--------------------------------|-------------------------|
| 376                            | 1                       |
| 197                            | 2                       |
| 137                            | 3                       |
| 108                            | 4                       |
| 90                             | 5                       |



Based on 10% interest rate

Mcf = thousand cubic feet, scfh = standard cubic feet per hour

## Methane Losses from Centrifugal Compressors

- Centrifugal compressor wet seals leak little gas at the seal face
  - Seal oil degassing may vent 40 to 200 cubic feet per minute (cf/m) to the atmosphere
  - ◆ A Natural Gas STAR partner reported wet seal emissions of 75 Mcf/day (52 cf/m)





### Centrifugal Compressor Wet Seals

- \* High pressure seal oil is circulates between rings around the compressor shaft
- \* Gas absorbs in the oil on the inboard side
- \* Little gas leaks through the oil seal
- Seal oil degassing vents methane to the atmosphere





## Gas STAR Partners Reduce Emissions with Dry Seals

- Dry seal springs press the stationary ring in the seal housing against the rotating ring when the compressor is not rotating
- At high rotation speed, gas is pumped between the seal rings creating a high pressure barrier to leakage
- Only a very small amount of gas escapes through the gap
- ★ 2 seals are often used in tandem
- Can operate for compressors up to 3,000 psig safely

NaturalGas 🗥





### **Methane Recovery with Dry Seals**

- ★ Dry seals typically leak at a rate of only 0.5 to 3 cf/m
  - ◆ Significantly less than the 40 to 200 cf/m emissions from wet seals

★ Gas savings translate to approximately

\$49,000 to \$279,000 at \$3/Mcf





### Other Benefits with Dry Seals

- Aside from gas savings and reduced emissions, dry seals also:
  - Lower operating cost
    - Dry seals do not require seal oil make-up
  - Reduced power consumption
    - Wet seals require 50 to 100 kiloWatt per hour (kW/hr) for ancillary equipment while dry seals need only 5 kW/hr
  - Improve reliability

NaturalGas (1)

- More compressor downtime is due to wet seals with more ancillary components
- ◆ Eliminate seal oil leakage into the pipelines
  - Dry seals lower drag in pipelines (and horsepower to overcome)



### **Economics of Replacing Seals**

★ Compare costs and savings for a 6-inch shaft beam compressor

| Cost Category                                                                                                                           | Dry Seal<br>(\$)   | Wet Seal<br>(\$) |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|
| Implementation Costs                                                                                                                    |                    |                  |
| Seal costs (2 dry @ \$10,000/shaft-inch, w/testing)                                                                                     | 120,000            |                  |
| Seal costs (2 wet @ \$5,000/shaft-inch)                                                                                                 |                    | 60,000           |
| Other costs (engineering, equipment installation)                                                                                       | 120,000            | 0                |
| Total Implementation Costs                                                                                                              | 240,000            | 60,000           |
| Annual O&M                                                                                                                              | 10,000             | 73,000           |
| Annual methane emissions <sup>4</sup> (@ \$3.00/Mcf; 8,000 hrs/yr)<br>2 dry seals at a total of 6 scfm<br>2 wet seals at total 100 scfm | 8,640              | 144,000          |
| Total Costs Over 5-Year Period (\$):                                                                                                    | 333,200            | 1,145,000        |
| Total Dry Seal Savings Over 5 Years:<br>Savings (\$)<br>Methane Emissions Reductions (Mcf) (at 45,120 Mcf/yr)                           | 811,800<br>225,600 |                  |



### Is Wet Seal Replacement Profitable?

- Replacing wet seals in a 6 inch shaft beam compressor operating 8,000 hr/yr
  - ♦ Net Present Value = \$531,940
    - Assuming a 10% discount over 5 years
  - ♦ Internal Rate of Return = 86%
  - ◆ Payback Period = 14 months

NaturalGas (1)

- Ranges from 8 to 24 months based on wet seal leakage rates between 40 and 200 cf/m
- \* Economics are better for new installations
  - ◆ Vendors report that 90% of compressors sold to the natural gas industry are centrifugal with dry seals

## Directed Inspection and Maintenance at Compressor Stations

- ★ What is the problem?
  - ◆ Gas leaks are <u>invisible</u>, <u>unregulated</u> and <u>go unnoticed</u>
- STAR Partners find that valves, connectors, compressor seals and open-ended lines (OELs) are major sources
  - ◆ About 40 Bcf methane emitted per year from OELs
  - ◆ About 10 Bcf methane emitted per year from compressor seals
- ★ Facility fugitive methane emissions depend on operating practices, equipment age and maintenance



# Natural Gas Losses by Equipment Type



#### **How Much Methane is Emitted?**

#### Summary of Natural Gas Losses from the Top Ten Leakers

| Plant No. | Gas Losses  | Gas Losses From | Contribution | Percent of |
|-----------|-------------|-----------------|--------------|------------|
|           | From Top 10 | All Equipment   | By Top 10    | Plant      |
|           | Leakers     | Leakers         | Leakers      | Components |
|           | (Mcf/d)     | (Mcf/d)         | (%)          | that Leak  |
| 1         | 43.8        | 122.5           | 35.7         | 1.78       |
| 2         | 133.4       | 206.5           | 64.6         | 2.32       |
| 3         | 224.1       | 352.5           | 63.6         | 1.66       |
| 4         | 76.5        | 211.3           | 36.2         | 1.75       |
| Combined  | 477.8       | 892.84          | 53.5         | 1.85       |

<sup>&</sup>lt;sup>1</sup>Excluding leakage into flare system



#### **How Can These Losses Be Reduced?**

Implementing a Directed Inspection and Maintenance (DI&M) Program





### What is a DI&M Program?

- ★ Voluntary program to identify and fix leaks that are cost-effective to repair
- ★ Outside of mandatory LDAR
- \* Survey cost will pay out in the first year
- \* Provides valuable data on leakers



### Screening and Measurement

#### Summary of Screening and Measurement Techniques

| Instrument/<br>Technique                 | Effectiveness | Approximate Capital Cost |
|------------------------------------------|---------------|--------------------------|
| Soap Solution                            | * *           | \$                       |
| Electronic Gas Detectors                 | *             | \$\$                     |
| Acoustic Detection/ Ultrasound Detection | * *           | \$\$\$                   |
| TVA (FID)                                | *             | \$\$\$                   |
| Bagging                                  | *             | \$\$\$                   |
| High Volume Sampler                      | * * *         | \$\$\$                   |
| Rotameter                                | * *           | \$\$                     |
| Infrared Detection                       | * * *         | \$\$\$                   |



#### **Cost-Effective Repairs**

#### **Repair the Cost Effective Components**

| Component                   | Value of<br>Lost Gas <sup>1</sup><br>(\$) | Estimated<br>Repair Cost<br>(\$) | Payback<br>(Months) |
|-----------------------------|-------------------------------------------|----------------------------------|---------------------|
| Plug Valve: Valve Body      | 12,641                                    | 200                              | 0.2                 |
| Union: Fuel Gas Line        | 12,155                                    | 100                              | 0.1                 |
| Threaded Connection         | 10,446                                    | 10                               | 0.0                 |
| Distance Piece: Rod Packing | 7,649                                     | 2,000                            | 3.1                 |
| Open-Ended Line             | 6.959                                     | 60                               | 0.1                 |
| Compressor Seals            | 5,783                                     | 2,000                            | 4.2                 |
| Gate Valve                  | 4,729                                     | 60                               | 0.2                 |





#### **How Much Gas Can Be Saved?**

- \* Natural Gas STAR Lessons Learned study for DI&M at compressor stations estimates
  - Potential Average Gas Savings ~ 29,000 Mcf/yr/compressor station
  - ◆ Value of gas saved ~ \$87,000 / compressor station (at gas price of \$3/Mcf)
  - Average initial implementation cost ~ \$26,000 / compressor station



#### **Discussion Questions**

- ★ To what extent are you implementing these opportunities?
- ★ Can you suggest other opportunities?
- How could these opportunities be improved upon or altered for use in your operation?
- What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing these practices?

